Final exam Calculus-3 (10 points free):

Total points to obtain 100 [In all problems provide a brief justification for what you do]

Problem 1 (15 points)

Consider the series: $\sum_{n=0}^{\infty} \frac{(x-2)^n}{3^n}$ (a: 10 points) For which values of x is the series convergent? (b: 5 points) Find the sum of the series

Problem 2 (10 points) Show that: $\frac{1+x}{1-x} = 1 + 2\sum_{n=1}^{\infty} x^n$ if |x| < 1

Problem 3 (20 points)

Suppose a mass m is attached to a spring with spring constant k, and let $k = m\omega^2$. If an external force $F(t) = F_o \cos(\omega_o t) \ (\omega_o \neq \omega)$ is applied, then we have the equation of motion for non-zero dissipation (c>0): $m \frac{d^2 x}{dt^2} + c \frac{dx}{dt} + kx = F(t)$ (1) Show that a particular solution of Eq. (1) $(c^2 - 4mk < 0)$ is given by: $x_p(t) = \begin{cases} \frac{F_o}{\sqrt{(k - m\omega_0^2)^2 + (c\omega_0)^2}} \\ \sqrt{(k - m\omega_0^2)^2 + (c\omega_0)^2} \end{cases} \cos(\omega_0 t + \delta)$ Tip: $x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) = A\cos(\omega t + \delta)$ with $A = \sqrt{c_2^2 + c_1^2}$ and $\tan \delta = -c_2/c_1$ $\tan \delta = -c\omega_0/(k - m\omega_0^2)$

Problem 4 (10 points) Assume a function f(x) to have Fourier transform: $F(k) = \int_{-\infty}^{+\infty} f(x)e^{-i2\pi kx} dx$ Consider also the Fourier transform definition of the Dirac Delta function: $\delta(k) = \int_{-\infty}^{+\infty} e^{-i2\pi kx} dx$ Then derive the Fourier Transform of the function: $f(x) = \sin[4\pi k_o x]$

Problem 5 (15 points)

Find the <u>sine</u> Fourier series solution to the differential equation $\frac{d^2y}{dx^2} + ky = f(x)$ with k an integer, f(x) an odd function [f(x)=-f(-x)], and the boundary conditions y(0)=y(4)=0

Tip: The Fourier sine expansion has the general form $Y(x) = \sum_{n=1}^{\infty} b_n \sin(n\pi x/L), \ b_n = (2/L) \int_0^L Y(x) \sin(n\pi x/L) dx$, for $x \in [0, L]$

Problem 6 (20 points)

Consider the boundary value problem for the one-dimensional heat equation for a bar with the zero-temperature ends:

$$\begin{array}{ll} \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}, & u = u(x,t), \quad t > 0, \quad 0 < x < L, \\ u(x,0) = f(x), \\ u(0,t) = 0, & u(L,t) = 0, \quad t \ge 0. \\ u(x,t): \ \text{Temperature} \end{array}$$

$$\begin{array}{ll} (\underline{a: 10 \text{ points}}) \text{ Show that the general solution} \\ \text{for } u(x,t) \text{ is given by:} \\ u(x,t) = \sum_{n=1}^{\infty} B_n e^{-\lambda_n^2 t} \sin \frac{n\pi}{L} x \text{ , } \lambda_n = \frac{cn\pi}{L} \end{array}$$

(b: 10 points) Derive the solution u(x,t) for the case $f(x)=50sin(\pi x/40) + 30sin(3 \pi x/40)$ (with L=40)